Decay properties of 22 Ne + α resonances with TIARA and MDM spectrometer

S. Ota,¹ G.A. Christian,¹ E.A. Bennett,¹ S. Dede,¹ D.T. Doherty,² H. Jayatissa,¹

J. Hooker,¹ C. Hunt,¹ C. Magana,¹ G. Rogachev,¹ A. Saastamoinen,¹ S. Upadhyayula,¹

W.N. Catford,² S. Hallam,² G. Lotay,² M. Mouhkaddam,² J.A. Tostevin,² and R. Wilkinson²

¹Cyclotron Institute, Texas A&M University, College Station, Texas 77843 ²University of Surrey, Guildford GU2 5XH, United Kingdom

In core He burning and C-shell burning of massive stars (> 8 solar mass), the ${}^{22}Ne(\alpha,n){}^{25}Mg$ reaction is considered to be a dominant neutron source for the weak s-process during which nuclides in the A=60-90 mass range are produced [1]. The reaction also plays a secondary role in the neutron production for the main s-process in He-low and intermediate mass asymptotic giant branch (AGB) stars during which nuclides in the A~90-209 are produced [1]. While various attempts to experimentally determine the rate for this reaction at the s process temperatures (T = 0.2-0.3 GK, equivalent to $E_{\alpha,lab}$ = 400 - 900 keV, namely, E_x=10.9-11.5 MeV in the excitation energy of ²⁶Mg) have been made by direct $(^{22}\text{Ne}+^{4}\text{He or }\alpha+^{22}\text{Ne})$ measurements [e.g., 2], they have been hindered by the small cross sections due to the Coulomb barrier. Thus the resonance at $E_{\alpha,lab} \sim 830$ keV ($E_x \sim 11.32$ MeV) is the lowest resonance identified with this method. Although indirect methods such as ${}^{26}Mg(\alpha,\alpha'){}^{26}Mg$, ${}^{22}Ne({}^{6}Li,d){}^{26}Mg$, $^{25}Mg(n,\gamma)$, $^{26}Mg(\gamma,\gamma')$ reactions [e.g., 3-7] have been used to identify lower-energy resonances, there remain many uncertainties in spin-parity (J^{π}), partial widths of respective decay channels (Γ_{γ} , Γ_{n} , and Γ_{α}) of these resonances. Since past studies identified particularly two resonances, Ex=11.32 and 11.17 MeV above neutron separation energy ($S_n=11.093$ MeV), have the largest impact on the neutron production during the s-process [e.g., 7], unambiguously determining J^{π} , Γ_{γ} , Γ_{n} , and Γ_{α} for these resonances is important.

To determine these resonance parameters, we performed an experiment using the ${}^{6}\text{Li}({}^{22}\text{Ne},{}^{26}\text{Mg})d\alpha$ -transfer reaction with a large Si detector array, TIARA [8], and HPGe detector array, and the MDM spectrometer [9,10]. Because both the α and ${}^{22}\text{Ne}$ have ground states with $J^{\pi}=0^+$, the α -transfer reaction preferentially populates natural parity states in ${}^{26}\text{Mg}$. This helps us selectively study the resonance parameters of astrophysically relevant natural parity states in ${}^{26}\text{Mg}$, and J^{π} of these resonance states can be determined by measuring the angular distribution of deuterons. Furthermore, the inverse kinematics approach enables us to determine $\Gamma_n / \Gamma_{\gamma}$ by direct measurements of the ratio of produced ${}^{25}\text{Mg}$ (${}^{26}\text{Mg}*\rightarrow{}^{26}\text{Mg}+\eta$) and ${}^{26}\text{Mg}$ (${}^{26}\text{Mg}*\rightarrow{}^{26}\text{Mg}+\gamma$) ions at the resonance states. Determining $\Gamma_n / \Gamma_{\gamma}$ is important to understand the neutron yield of these resonances. The ${}^{22}\text{Ne}(\alpha,\gamma){}^{26}\text{Mg}$ reaction competes with the ${}^{22}\text{Ne}(\alpha,n){}^{25}\text{Mg}$ reaction at $E_x=11.32$ and 11.17 MeV resonances and therefore may significantly suppress neutron production for the s-process.

The experiment was performed at Cave 3 using a 7 MeV/u ²²Ne beam from the K150 cyclotron. ⁶Li-enriched (95%) lithium fluoride (LiF) targets with the thickness of 30 μ g/cm² on a graphite backing foil (10 μ g/cm²) were prepared and bombarded with the beam at an intensity of about 3 nA. Details of the experiment can be found in [11].

The ²⁶Mg excitation spectrum measured in the present experiment is shown in Fig. 1 [12]. It is evident that the resonance of our interest (E_x =11.32 MeV) is clearly observed and we concluded the

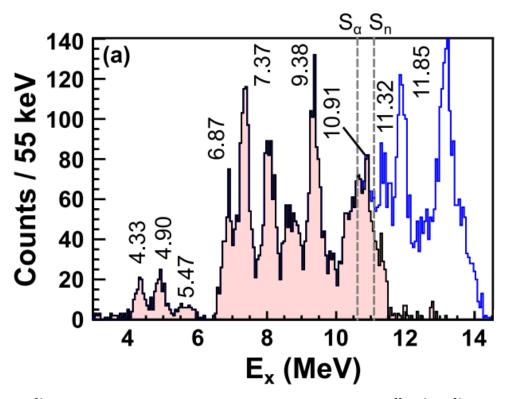
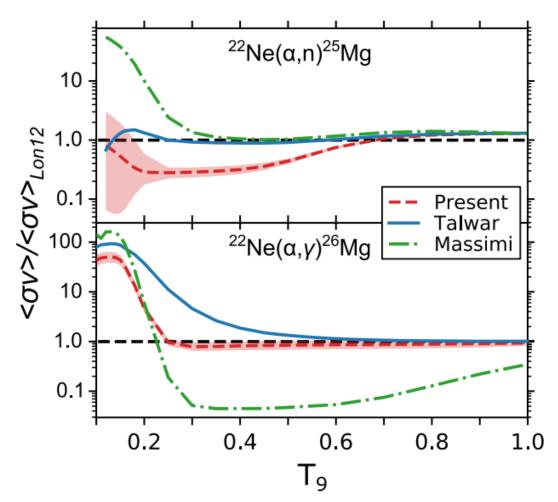



Fig. 1. ²⁶Mg excitation energy spectrum (red shadow: contribution from ²²Ne(⁶Li,d)²⁶Mg, blue: sum of contributions from ²²Ne(⁶Li,d)²⁶Mg and ²²Ne(⁶Li,d+n)²⁵Mg). $E_x=11.32$ MeV resonance peak is distinct in both spectra.

branching ratio of $\Gamma_n / \Gamma_\gamma = 1.14\pm 0.26$ from the ratio of ²⁵Mg/²⁶Mg ions observed by the MDM at the resonance energy after the efficiency correction. This result indicates Γ_n / Γ_γ is largely overestimated in past direct measurements as discussed below, which performed the (α ,n) and (α , γ) measurements independently. Since the (α , γ) resonance of the resonance is relatively well constrained as 37±4 µeV [13,14], whereas (α ,n) strength has large discrepancies among the past measurements, (α ,n) strength was determined by multiplying the (α , γ) strength with the Γ_n / Γ_γ obtained in the present work. The obtained (α ,n) strength is thus 42±11 µeV, which is much smaller than the past measurements (inflated weighted average of 140±30 eV [7]). The (α , γ) and (α ,n) strengths of the E_x=11.17 MeV resonance are estimated from the Γ_α determined by [15] with the branching ratio (Γ_n / Γ_γ =0.2-0.6) and the J^π (2⁺) from [6]. Fig. 2 shows the final stellar reaction rates (as a ratio to ones by Longland *et al.* [7]) as a function of stellar temperature. It is clearly seen that the obtained new reaction rates are about 3 times lower than the values conventionally used in the past nuclear astrophysics studies in the s-process temperature range.

Currently we are evaluating effects of our new results on s-process chemical abundances, and the results will be published soon.

Fig. 2. Ratios of stellar reaction rates to Longland *et al.* [7] for ${}^{22}Ne(a,n){}^{25}Mg$ (top) and ${}^{22}Ne(a,g){}^{26}Mg$ (bottom) reactions as a function of temperature (in unit of GK).

- [1] F. Kappeler, Prog. Part. Nucl. Phys. 43, 419 (1999).
- [2] M. Jaeger et al., Phys. Rev. Lett. 87, 20 (2001).
- [3] P. Adsley et al., Phys. Rev. C 96, 055802 (2017).
- [4] U. Giesen, J.D. King et al., Nucl. Phys. A561, 95 (1993).
- [5] R. Talwar et al., Phys. Rev. C 93, 055803 (2016).
- [6] C. Massimi et al., Phys. Lett. B 768, 1 (2017).
- [7] R. Longland et al., Phys. Rev. C 80, 055803 (2009).
- [8] M. Labiche et al., Nucl. Instrum. Methods Phys. Res. A614, 439 (2010).
- [9] D.M. Pringle et al., Nucl. Instrum. Methods Phys. Res. A245, 230 (1986).
- [10] A. Spiridon et al., Nucl. Instrum. Methods Phys. Res. B376, 364 (2016).
- [11] S. Ota et al., Progress in Research, Cyclotron Institute, Texas A&M University (2018-2019), p. I-29.

- [12] S. Ota et al., Phys. Let. B 802, 135256 (2020).
- [13] K. Wolke et al., Z. Phys. A **334**, 491 (1989).
- [14] S. Hunt et al., Phys. Rev. C 99, 045804 (2019).
- [15] H. Jayatissa et al., Phys. Lett. B 802, 135267 (2020).